论"卓越工程师培养计划"的实施

-卓越班实习焊接教学方法探讨

叶益民

(江苏大学 基础工程训练中心,江苏 镇江 212013)

摘 要,在全球化经济时代的今天,由于经济增长方式 的转变,产业结构不断调整,应用型工程技术人才无法满足产 业及社会发展的需求, 结合教育部的"卓越工程师培养计划" 和材料成型及控制工程专业焊接方向的培养目标。针对卓越 班金工实习过程中的焊接教学,探讨适合我校学生参与"卓越 工程师培养计划"的具体可行方法,提出以培养应用型焊接人 **才为目标的教学方案**

关键词: 卓越工程师 人才培养 焊接教学

1.引言

目前,我国正处于经济社会的转型期,需要加快建设国家 创新体系,走出一条科技含量高、经济效益好、资源消耗低、 环境污染少、人力资源优势得到充分发挥的新型工业化道路 和绿色制造之路,才能实现我国现代化建设的根本目标。为 培养创新与实践能力强、适应我国经济发展的各类工程技术 人才,教育部提出"卓越工程师培养计划"。"卓越工程师教育 培养计划"作为《国家中长期教育改革与发展规划纲要(2010~ 2020)》组织实施的一项重大项目,旨在全面提高我国工程人 才培养质量,为国家走新型工业化发展道路和人才强国战略 服务,促进我国从工程教育大国走向工程教育强国[1]。高等学 校作为实施"卓越计划"的主体,要认真贯彻落实"卓越计划" 的教育教学理念,加强校企合作机制,在人才培养模式等方 面有突破性和创新性。卓越计划对高等教(育)面向社会需求 培养人才,调整人才培养结构,提高人才培养质量,推动教育 教学改革,增强毕业生就业能力具有十分重要的示范和引导 作用

卓越计划的实施要点是:一是培养的人才拥有丰富的理 论知识:二是实践和生产结合,培养实用型人才:三是注重人 员的创新能力及领导能力的培养。

焊接是指被焊工件的材质(同种或异种),通过加热或加 压或两者并用,并且用或不用填充材料,使工件的材质达到原 子间的结合而形成永久性连接的工艺过程。由于焊接产品比 铆接件、铸件和锻件重量轻,密封性、结合性能好,被广泛应用 于机械、船舶制造、航空航天、汽车、石油化工、建筑、电子等领 域。显然焊接技术已经成为现代工业高质量、高效率生产的不 可缺少的先进制造技术,而培养应用型焊接人才已成为各大 工科院校的当务之急。

为贯彻和落实卓越工程师的方针与政策,为社会培养更 多焊接方面的卓越人才,笔者通过对学员具体情况的调查与 了解,制定系统的理论与实践培训课程,采取在注重理论实践 相结合的前提下,培养学员的创新能力,为企业培养更多的焊 接卓越工程师打下基础。笔者就培养焊接型人才方法的改革 与创新进行了初步分析和探讨。

2.实例教学,全面培养学生对焊接知识的理解与掌握

优秀的工程师离不开理论知识的支撑,同时理论知识不 能脱离实际工程生产,实施卓越计划的主要目的是培养全方 位的卓越人才。因此,笔者着眼于让教学回归工程,实践理论 结合讲解,避免纸上谈兵,并针对具体的焊接案例进行教学分 析,使学员全面掌握与理解。"案例教学"最先由德国历史学家 海姆佩尔提出,和"教学与发展实验"教学理论、"结构主义"教 学理论成为三大新教学论流派,在全世界具有较大的影响。二。实 例教学作为可呈现的教学模式、能激发学员们的学习兴趣,拓 宽视野,培养学生思考问题的能力。同时,提高学员分析和解 决问题的能力,有利于增强学员的工程能力。基于培养工程应 用型焊接技术与工程专业人才的目标,笔者结合《金属材料焊 接》、《焊接冶金学》、《焊接工艺》课程、以实例教学法、以学生 为主体的互动式教学方法,选择具有代表性的焊接结构进行 示范操作和讲解,把焊接过程全面清晰地呈现在学员面前,使 学员掌握焊接的准备过程、焊接过程、焊接问题的分析及焊接 注意事项等

目前,全国已有"985工程大学"、"211工程大学"、省属重 点本科院校、省属一般本科院校在内的61所大学作为首批试 点高校。作为试点高校之一,江苏大学按照国家"卓越工程师 教育培养计划"要求,依托我校流体机械及工程、机械制造及 其自动化和车辆工程学科的优势、构建出工程型精英人才培 养平台,充分利用我校和企业(集团)的优质教学资源,以"大 工程教育"理念为指导,着力培养出主动适应我国现代工业发 展需求,与国际工程教育接轨,体现我校优势特色的高素质创 新人才,学院的办学能力及人才培养质量达到国内一流水平, 这一方案主要特征可归纳为:(1)小范围、大幅度。 我校依托 "机械设计制造及自动化"、"车辆工程"、"流体机械及工程"三 个国家特色和省品牌专业及相应的重点学科,每年遴选150~ 200名新生、组建"工程型精英人才培育班"、范围小、改革幅度 大。(2)工程型、精英化。依据学校现有的办学条件和办学特 色,我们将培养目标定位于"工程型精英人才",它既不同于部 分"985"研究型高校中"尖子班"所定位的"顶尖学术型人才", 又不同于许多普通高校定位的"强基础理论型科研人才"。我 们的培养目标是直接面向工程实际,主动适应社会经济发展 需要,实践能力和创新能力强的高素质工程人才,其中一部分 要努力培养成为工程技术界的领军人物。(3)综合性、开放式。 "江苏大学工程型精英人才培养模式改革方案"是在"江苏大 学卓越工程师教育培养计划"的基础上,结合之前实施的"优 生优培计划"、"提前免试攻读硕士学位预备生计划"等形成的 综合性改革方案。按此方案培养的学生,前两年不分专业、不 分类型,实施真正意义上的宽口径、大平台培养:后两年学生 可选择申请成为提前免试攻读硕士学位预备生或到国外知名 大学实现联合培养等多条成才途径,实现个性化的成才目标。

3.创新实践,实际操作

胡锦涛同志在党的十七大报告中指出:"提高自主创新能 力,建设创新型国家,这是国家发展战略的核心,是提高综合 国力的关键。要坚持走中国特色自主创新道路,把增强自主创 新能力贯彻到现代化建设的各个方面。"四创新实践指通过积 极参加创新实践活动,尝试用创造性的方法解决实践中的问 题,从创新行为上反映创新能力的综合表现等[4]。目前,我国 在培养高素质工程技术人才方面存在一些薄弱环节,如教育 观念和模式落后,教学内容陈旧,教学方法呆板,理论脱离实 际,普遍的教学缺乏创新性和实践性,从而阻碍我国高等工程 教育的发展。因此,需解决高等工程教育中的实践性和创新性

问题,培养一批理论、实践、创新能力强,适应经济和社会发展 需的工程卓越人才。实验实践是提高工科学生创新能力的主 要方式、由于条件有限、笔者根据自己多年的焊接经验、制定 了实验培养方案:

涉及焊接方法、焊接工艺、焊接结构、焊接材料等多门焊 接专业课程的综合运用,需要学员通过查阅资料确定方案,自 己选用合适的焊接结构、焊接具体操作方式进行焊接,对焊接 接头进行力学性能的测试与质量评定,并对试验方案进行探 索和改进。该方案理论与实践相结合,不仅能够培养学生掌握 科学的研究方法,学会创造性思维,还能够提高实际工程动手 能力和创造性解决问题的能力。

4.培训效果与总结

焊接是一门实践性很强的课程,仅仅理论上的讲述,很难 让学生深刻地理解焊接的过程,因此,必须理论与实践并重, 更注重实践的教学。因为焊接的种类与设备较多,种类比较繁 杂且区别较大,所以生产实践环节与理论教学显得尤为重要, 只有让学生充分接触到实际焊接设备,才能加深对焊接的理 解和掌握

焊接设备对外从事加工且以学生的教学为主。在学生精 工实习的基础上,充分发挥焊接中心的优势,在理论教学后现 场给学生演示操作流程及设备,充分激发学生的兴趣,更好地 服务于案例教学。在实践教学过程中,笔者为学生制定目标, 提出明确的要求及注意事项,让学生充分做好前期准备。带着 任务和问题深入实践过程,避免走马观花,不求效率,并且定 期为学生做好答疑工作题。对学生采取三个半天分组的形式, 学生自己确定焊接方案(手工电弧焊、氧乙炔焊、二氧化碳焊 接)。以培养学生的动手能力,独立分析问题和解决问题的能 力,以及创新能力和交流能力。学生自主设计焊接实物如下图 所示:

图 学生自主设计焊接自行车

(上接第186页)的三年规划",每一个学期对自己都提出一 些具体发展目标,可以从教师备课、教师基本功、班级管理方 式的改进、论文撰写等方面入手,目标应切合自身实际,不写 好高骛远的空话,而是选择自己努力跳一跳能够得着的目标, 并在以后的工作中踏踏实实地做。其次园领导还应为每位新 教师设立"成长档案",记录他们努力工作的点点滴滴,记录他 们成长的轨迹。

新教师入职的适应期是整个教学生涯的开端,只有扎实地 走好教海探航的第一步,找到适合自己的目标定位和成长路

上图中,自行车项目制作为四人一组工艺综合训练计 划。(1)先进行项目介绍(实习目的、要求)。(2)零件加工工 艺讲座(零件加工工艺规程设计、毛坯制作、基准选择、机械 加工余量的确定、刀具选择、工序卡的填写等)。(3)任务布 置(分组、完成项目计划任务书)。(4)零件分析、设计、制定 加工工艺(零件设计或测绘,分析图纸,制定工艺,填写工序 卡片和进行零件成本核算)。(5)零件加工制作(按照工序卡 在各工种完成零件加工)。(6)装配调试和焊接(小组装配及 焊接组装。)(7)研讨、小结(导师和学生进行研讨和训练报 告小结)。

自行车轮子为学生进行沙箱铸造产品,自行车零部件通过 车床切削和铣床铣削加工,自行车手把采用线切割加工等

实践证明:通过理论课程学习,让学生认识到焊接的准备 过程、焊接过程、焊接问题的分析及焊接注意事项等,在焊接 方法、工艺路线确定、工艺参数选择、物料控制等各个方面都 要进行深入研究,积累翔实的数据,在透彻理解的基础上,确 定最佳的焊接方法和工艺,再通过完成教师布置的课题,更深 入、切实地体会该设计理念和方法。通过案例分析,学生系统 掌握了焊接的实施过程,启发了学生的思维,提高了学生分析 和解决实际生产问题的能力。

通过实践操作学习,学生增强了工程实践环节,通过基于 项目的学习方法,培养了获取知识的能力、运用知识解决问题 的能力,总结实践经验发现新知识的能力,团队工作的能力, 与人沟通和交流的能力及创新的能力,培养了专业素质、职业 道德和社会责任心。

5.结语

实践证明,重视教学实践,本课程的焊接教学工作收到了 较好的效果,获得了学生的好评,对该课程教学模式进行的改 革与创新试验是符合教育规定的。通过在课程中实施理论教 学与实践教学并重的模式,开设创新实践训练环节,可以在一定 程度上提高学生的工程能力、发展学生的创新思维。

参考文献.

- [1]陈希.着力培养卓越工程师后备人才.人民日报,2010-
- [2]蒋金友.案例教学初探[J].中国科教创新导刊,2010 (13):95.
- [3]胡锦涛.高举中国特色社会主义事业伟大旗帜为夺取 全面建设小康社会新胜利而奋斗[N],新华每日电讯,2007-
- [4]童洪志,邓文卓.研究生创新能力培养模式研究[J].科 技与管理,2009,11(6):138-144.
- [5]陈玉华,卓越工程师教育背景下《金属材料焊接》课程 改革的探索[J].中国科教创新导刊,2011(34):233-235.

线,才能在今后的航程中乘风破浪、勇往直前。

参考文献:

- [1]幼儿园教育指导纲要(试行)解读.教育部基础教育司 组织编写
- [2]叶岚,主编.幼儿园新教师导读.北京:高等教育出版 社,2011.8.
- [3]梁艳珍.浅探幼儿园新教师的角色适应[J].幼儿教育 导读(教师版)下半月,2009.10.